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ABSTRACT

Computer science advances and ultra-fast computing speeds find artificial intelligence (AI) broadly ben-
efitting modern society—forecasting weather, recognizing faces, detecting fraud, and deciphering genomics.
AI’s future role in medical practice remains an unanswered question. Machines (computers) learn to detect
patterns not decipherable using biostatistics by processing massive datasets (big data) through layered math-
ematical models (algorithms). Correcting algorithm mistakes (training) adds to AI predictive model confidence.
AI is being successfully applied for image analysis in radiology, pathology, and dermatology, with diag-
nostic speed exceeding, and accuracy paralleling, medical experts. While diagnostic confidence never reaches
100%, combining machines plus physicians reliably enhances system performance. Cognitive programs are
impacting medical practice by applying natural language processing to read the rapidly expanding scien-
tific literature and collate years of diverse electronic medical records. In this and other ways, AI may optimize
the care trajectory of chronic disease patients, suggest precision therapies for complex illnesses, reduce medical
errors, and improve subject enrollment into clinical trials.
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In 1936, mathematician Alan Turing published
On Computable Numbers, With an Application to the
Entscheidungsproblem, a paper later dubbed “the founding
document of the computer age.”1 Turing’s life was reprised
in the 2014 film, The Imitation Game. Attempting to solve
the Entscheidungsproblem, Turing and his Princeton col-
league, Alonzo Church, used calculus to define the concept
of “effective calculability.” Such intelligent human problem-
solving became the basis of computational models called
algorithms.

In 1943, neurophysiologist Warren McCulloch and math-
ematician Walter Pitts modeled brain neuronal interactions
using a simple neural network made of electrical circuits. The

first computer research with artificial neural networks was done
in the 1950s by Nathanial Rochester at International Busi-
ness Machines (IBM), and Bernard Widrow and Marcian Hoff
at Stanford. Today’s computer scientists apply multilayered
algorithms using a variety of artificial neural network con-
figurations to solve complex problems. Modern artificial neural
networks represent one of the most active areas of artificial
intelligence (AI) research.

In 1964, television guru Merv Griffin invented Jeopar-
dy!, America’s third-longest running game show. In 2011, a
supercomputer named for IBM’s first chief executive, Thomas
J. Watson, used AI to defeat 2 very intelligent humans in an
exhibition match culminating with the correct response to this
question: “Which author’s most famous novel was inspired
by William Wilkinson’s ‘An Account of the Principalities of
Wallachia and Moldavia’?” (Answer: Bram Stoker’s Dracula).

ANSWERABLE QUESTIONS
Some questions about AI’s role in modern society have been
answered:

Why has AI emerged as useful in several diverse sectors (busi-
ness, science, government)?
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How does AI differ from standard biostatistics?
What is “big data”? How does AI enable big dataset analysis?
How do AI applications differ from smart technologies
(medical devices, digital diagnostics, data management
systems) already used in medical practice?

INSIDE AI’S BLACK BOX
While AI encompasses a wide range
of symbolic and statistical ap-
proaches to learning and reasoning
(Figure), recent advances in algo-
rithms, computational power, and
access to large datasets have enabled
artificial neural networks to emerge
as the leading AI method. Artifi-
cial neural networks are flexible
mathematical models that use mul-
tiple algorithms to identify complex
nonlinear relationships within large
datasets (analytics). Machines learn
when errors encountered in response
to minor algorithm modifications are
corrected (training), progressively
improving predictive model accu-
racy (confidence).2

Deep learning uses ultra-fast
computing to rapidly optimize large

multilayered datasets organized in a variety of configura-
tions, including filter layers as convolutional neural networks
and recursive layers as recurrent neural networks. Deep learn-
ing has been applied commercially since the 1990s,3 and while
modern math is similar to that employed in the 1980s, su-
percomputer speeds and Cloud networking permit

deconvolution of massive datasets.
In 2006, Hinton et al introduced a
novel method to train very deep
neural networks by pretraining
one hidden algorithm layer at a
time using an unsupervised machine
learning procedure4 and Bengio et
al validated Hinton’s work with test
data and used it with other unsu-
pervised techniques such as
auto-encoders.5

Ten years later, deep learning
modeling of big datasets exerts
major influences on modern
society—from Web searching to
social media networking, and from
financial technology banking
to facial recognition.3 Advanced al-
gorithms achieve acceptable
performance with ~5000 data points
per category, and exceed human per-
formance with datasets of >10
million labeled examples.2 The
bigger the dataset, the easier it is for

machines to learn (gain confidence) because the burden of
standard biostatistical estimation is reduced.2 Despite this, like
human thinking, predictive model confidence never reaches
100%.

WORKS IN PROGRESS
Questions remain about the applicability, practicality, and value
of AI in medical practice:

How is AI use in medical practice distinguished from big data
analytics applications for health care delivery and popula-
tion health?
Can AI address medical practice “pain points,” providing more
efficient and efficacious care while de-escalating physician
burnout?
Will AI improve patient outcomes when used at the point of
care?
Can Internet-of-Things health care facilities and medical homes
become a platform for safer, higher quality, more connected
patient care?

USE CASES FOR COGNITIVE MEDICAL PRACTICE
Simple neural networks have been used in medicine since the
early 1990s to interpret electrocardiograms,6 diagnose myo-
cardial infarction,7 and predict intensive care unit length of

CLINICAL SIGNIFICANCE

• Artificial intelligence (AI) medical image
analysis achieves diagnostic speed ex-
ceeding, and accuracy paralleling,
experts.

• AI will impact medical practice by ap-
plying natural language processing to
“read” the expanding scientific litera-
ture and collate diverse electronic
medical records.

• Machines learning directly from medical
data could avert clinical errors due to
human cognitive biases, positively im-
pacting patient care.

• Because AI is neither astute nor intu-
itive, physicians will remain essential to
cognitive medical practice.

Figure In the computation science universe, artificial intelli-
gence (AI) is distinguished from standard statistics and databases,
but overlaps with knowledge discovery and data mining (KDD)
methodologies that extract useful insights from large datasets. The
mathematics of pattern recognition (kernel machines, cluster anal-
ysis) overlaps significantly with machine learning edge-detection
algorithms and with neurocomputing based on artificial neural net-
works. The area of machine learning outside AI and within statistics/
pattern recognition is linear regression analysis.
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stay following cardiac surgery.8 AI’s scientific applications
have proliferated, including image analysis (radiographic, his-
tologic), text recognition with natural language processing,
drug activity design, and prediction of gene mutation
expression.9,10 Recent AI applications provide proof of concept
for AI use in specialty medical practice, while projecting future
utility in general medical practice.

Cognitive Diagnostics
Gene chips are widely used to detect cancer cell gene ex-
pression. However, despite chips holding diagnostic probes
for 20,000-50,000 genetic features, noisy data and experi-
mental limitations reduce their clinical utility. Deep learning
addresses this by reducing data diversity (dimensionality) and
applying layered auto-encoding analyses to train artificial
neural networks to achieve more accurate cancer detection
and classification.11

Histopathology of 1417 skin images analyzed using deep
learning architecture visual pattern analysis to detect basal
cell carcinoma and differentiate malignant from benign lesions
outperformed prior automated analyses, with diagnostic ac-
curacy of >90% compared with experts.12 Deep learning
histopathology identifies metastatic breast cancer in senti-
nel lymph node biopsies, with diagnostic accuracy for tumor
detection and localization similar to experts.13 These systems
train by comparing the features of millions of tumor-
positive and -negative histological patches, postprocessing these
data using heat maps to predict tumor probability. Combin-
ing pathologists and deep learning optimized performance,
reducing the human error rate by 85%.

Convolutional neural networks outperformed 21 derma-
tologists at keratinocyte carcinoma and melanoma detection
by classifying 129,450 images of 2032 malignant and benign
skin diseases using multiple layered algorithms trained to iden-
tify common deadly skin cancers.14

Chronic Disease Management
AI analytics support the practice of precision medicine, es-
pecially in the difficult setting of chronic diseases characterized
by multiorgan involvement, erratic acute events, and long
illness progression latencies.

For >29 million Americans with diabetes, retinopathy is
among the most debilitating complications. Using 128,175
retinal photographs from 5871 adults, 2 deep learning systems
trained to detect and grade diabetic retinopathy and macular
edema achieved high specificities (98%) and sensitivities (87%-
90%) for detecting moderately severe retinopathy and macular
edema, compared with 54 ophthalmologists and senior
residents.15 The feasibility of this approach in medical prac-
tice and its capacity to improve diabetes care and outcomes
require validation.

Depression affects 6.8%-8.7% of the adult US popula-
tion, resulting in 8 million annual ambulatory care visits.16

Primary care practices are not equipped to manage chronic
depressive illnesses. Phenotypic dimensionality and a paucity
of objective depression activity markers may be addressable

by applying deep learning to magnetic resonance image
mapping of white matter neuronal water content.17 Image heat-
map pattern recognition was 74% accurate for predicting major
depressive disorder, with certain brain regions contributing
more to model confidence.

Congestive heart failure is a clinically and biologically
diverse condition affecting 5.8 million Americans, and 23
million worldwide.18 Heart failure with preserved ejection frac-
tion (HFpEF) is a phenotypically heterogeneous condition
influenced by numerous weak genetic factors, without proven
therapies. When supervised machine learning was applied to
46 clinical variables from 397 HFpEF patients, phenotypic
heat-map clusters predicted patient survival more accurate-
ly than commonly employed risk assessments.19 AI approaches
could identify HFpEF subsets or individuals that could benefit
from therapies that failed to show survival benefits in clini-
cal trial cohorts.

Electronic Medical Record Applications
Electronic medical records (EMRs) are purported tools for
documenting and sharing medical care information. EMR chal-
lenges include lack of interoperability across technology
platforms over time, and massive expansion of structured and
unstructured data elements. Natural language processing is
an AI tool that “reads” and contextualizes different medical
words and expressions in EMRs. Available products can ac-
curately compile and connect decades of accumulated diverse
EMR data—history, physical, laboratory, imaging,
medications—in a user-friendly manner. IBM Watson gen-
erates accurate universal problem lists from diverse EMRs
in seconds, while also compiling relevant medical literature
in response to clinical queries.20 Deep learning modeling of
EMR data memory can predict future illness trajectories and
medical outcomes, confidently predicting interventions and
readmissions in 2 patient cohorts that exert heavy economic
and societal burdens—diabetes and mental health.21

POTENTIAL JEOPARDIES
Concerns about cognitive medical practice are largely the result
of existing information deficits:

Will providers perceive AI as another technology barrier to
direct patient care?
Does AI enhance or dis-intermediate patient–physician
engagement?
What nonmedical barriers exist to the use of AI in direct patient
care (eg, reimbursement, regulatory)?
Will AI put some physicians out of work (obsolescence) and/
or reduce physician compensation (relative value)?
Are physicians using AI at risk for skill erosion in diagnos-
tic expertise, clinical acumen, or critical thinking?
Will younger tech-savvy learners and clinicians become early
technology adopters, driving the development of AI-infused
cognitive practice?
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TECHNOLOGY INSERTION
Tracey Kidder’s 1981 Pulitzer Prize-winning book The Soul
of a New Machine22 underscored how imperfect humans re-
mained critical to intelligent computer design. The current
AI medical literature reproducibly supports a widely held
tautology—that collaborative human-machine tasking im-
proves performance over either alone. While AI’s technology
displacement curve is paralleled by an opportunity curve, con-
cerns abide that AI will dislocate highly skilled health
professionals from their jobs.

A tool is a device or implement used by humans for a par-
ticular function; tools are combined into machines for industrial
production. At the turn of the 20th century, combustion engines
combined tools to autonomously power vehicles over land.
In 2016, global automobile sales increased to 88 million units,
with China leading all nations. Public health evidence indi-
cates that fossil-fueled vehicles emit multiple air pollutants,
contributing to 2.1 million excess deaths in Asia alone between
1990 and 2010.23 At the turn of the 21st century, mobile devices
placed the data capture and analytics power of computers into
human hands. By 2018, average daily mobile device use for
Internet access alone will increase to 113 minutes per human.
Research associates mobile device use to higher risks of cancer,
accidents, and medical device interference.24 Just as ma-
chines have created unanticipated risks for humans, there may
be risks to AI use in medical practice.

The defense and aerospace industries often insert new or
improved technology into an existing product or system.25 As-
sociated process management challenges include, “platform
modernization and achieving the rapid fielding of the new
technology.” But the primary impediment to successful tech-
nology insertion is a lack of common understanding of the
technology among key users.

Industrial technology insertion differs from new medical
device or software regulation, under the aegis of the Food and
Drug Administration. Although the Food and Drug Admin-
istration is establishing a digital health unit, US and European
regulatory platforms are not yet equipped to oversee AI’s in-
sertion into medical practice. It is unclear whether the cost
of using AI technologies in medical practice will be reim-
bursed by value-conscious insurers.

“IS THAT YOUR FINAL ANSWER?”
Final Jeopardy! answer: An 1816 medical instrument in-
vented by Dr. René Laennec to avoid patient contact. Correct
question: “What is the stethoscope?”

There are 2 reasons why medical schools still teach stu-
dents to use a centuries-old tool. The first is that the stethoscope
reveals diagnostic information helpful to patient care. The
second is that the hand-held device requires learners to phys-
ically contact the precordium, a connection that is both
humanistic of doctors and reassuring to patients. While ex-
perienced auscultators glean 75%-80% of the information
generated by a Doppler echocardiogram, best medical prac-
tices and third-party reimbursement require that humans use
this simple tool prior to employing more modern machines.

Today’s cognitive machines have sophisticated sensors
that capture big and little data, and generate corrective
computer models simulating a rudimentary human nervous
system. In response to driver-reported battery fires from
road debris impact, Tesla Motors downloaded chassis height
adjustments to all of its smart vehicles to mitigate further
risk.

The daily practice of medicine is a game, of sorts, requir-
ing repeated situational assessments, pattern recognition based
on case experience, and evidence-based risk–benefit adjust-
ments. Mounting performance pressures can prompt reliance
on information-processing shortcuts—heuristic thinking or
gaming cheats—to improve decision-making efficiency and
workflow. Unfortunately, resulting cognitive biases may foster
clinical errors. Machines that learn directly from medical data
could avert such human cognitive biases, thereby contribut-
ing positively to patient care.

AI was not specifically developed as a tool for health care.
And while AI is poised to address indurate medical practice
“pain points,” it is neither astute nor intuitive. So it is that
humans will remain essential to the intelligent use of AI in
medical practice.
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